Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.081
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1379231, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638139

RESUMO

Receptor tyrosine kinases (RTKs) mediate the actions of growth factors in metazoans. In decapod crustaceans, RTKs are implicated in various physiological processes, such molting and growth, limb regeneration, reproduction and sexual differentiation, and innate immunity. RTKs are organized into two main types: insulin receptors (InsRs) and growth factor receptors, which include epidermal growth factor receptor (EGFR), fibroblast growth factor receptor (FGFR), vascular endothelial growth factor receptor (VEGFR), and platelet-derived growth factor receptor (PDGFR). The identities of crustacean RTK genes are incomplete. A phylogenetic analysis of the CrusTome transcriptome database, which included all major crustacean taxa, showed that RTK sequences segregated into receptor clades representing InsR (72 sequences), EGFR (228 sequences), FGFR (129 sequences), and PDGFR/VEGFR (PVR; 235 sequences). These four receptor families were distinguished by the domain organization of the extracellular N-terminal region and motif sequences in the protein kinase catalytic domain in the C-terminus or the ligand-binding domain in the N-terminus. EGFR1 formed a single monophyletic group, while the other RTK sequences were divided into subclades, designated InsR1-3, FGFR1-3, and PVR1-2. In decapods, isoforms within the RTK subclades were common. InsRs were characterized by leucine-rich repeat, furin-like cysteine-rich, and fibronectin type 3 domains in the N-terminus. EGFRs had leucine-rich repeat, furin-like cysteine-rich, and growth factor IV domains. N-terminal regions of FGFR1 had one to three immunoglobulin-like domains, whereas FGFR2 had a cadherin tandem repeat domain. PVRs had between two and five immunoglobulin-like domains. A classification nomenclature of the four RTK classes, based on phylogenetic analysis and multiple sequence alignments, is proposed.


Assuntos
Furina , Insulina , Furina/genética , Filogenia , Insulina/genética , Transcriptoma , Cisteína , Leucina/genética , Fator A de Crescimento do Endotélio Vascular/genética , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptores ErbB/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Tirosina
2.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38255923

RESUMO

Fibroblast growth factor receptors (FGFRs) are a family of receptor tyrosine kinases that are involved in the regulation of cell proliferation, survival, and development. FGFR alterations including amplifications, fusions, rearrangements, and mutations can result in the downstream activation of tyrosine kinases, leading to tumor development. Targeting these FGFR alterations has shown to be effective in treating cholangiocarcinoma, urothelial carcinoma, and myeloid/lymphoid neoplasms, and there are currently four FGFR inhibitors approved by the Food and Drug Administration (FDA). There have been developments in multiple agents targeting the FGFR pathway, including selective FGFR inhibitors, ligand traps, monoclonal antibodies, and antibody-drug conjugates. However, most of these agents have variable and low responses, with some intolerable toxicities and acquired resistances. This review will summarize previous clinical experiences and current developments in agents targeting the FGFR pathway, and will also discuss future directions for FGFR-targeting agents.


Assuntos
Neoplasias dos Ductos Biliares , Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Estados Unidos , Humanos , Receptores de Fatores de Crescimento de Fibroblastos/genética , Terapia de Alvo Molecular , Ductos Biliares Intra-Hepáticos , Tirosina
4.
Chin J Physiol ; 66(5): 295-305, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37929340

RESUMO

The morbidity and mortality of prostate cancer are increasing year by year, and the survival rate of prostate cancer patients after treatment is low. Therefore, investigating the molecular mechanism underlying prostate cancer is crucial for developing effective treatments. Recent studies have shown the important role of long-chain non-coding RNAs (lncRNAs) in tumorigenesis. VPS9D1-AS1 can modulate the progression of multiple cancers, but its molecular action mechanism in prostate cancer remains unknown. This study, therefore, intended to investigate the regulatory mechanism of VPS9D1-AS1 in prostate cancer. First, differentially expressed lncRNAs in prostate cancer were identified through bioinformatics approaches. The target lncRNA for the study was determined by reviewing the relevant literature and its downstream miRNA/mRNA axis was uncovered. Then, quantitative reverse transcription polymerase chain reaction was introduced to assess the expression of VPS9D1-AS1, miR-187-3p, and fibroblast growth factor receptor-like 1 (FGFRL1) at a cellular level, and Western blot was conducted to assess the protein level of FGFRL1 in cells. The results indicated that VPS9D1-AS1 and FGFRL1 were highly expressed in prostate cancer while miR-187-3p was less expressed. Besides, MTT, colony formation, wound healing, and cell invasion assays showed that silencing VPS9D1-AS1 inhibited the viability, migration ability, and invasion ability of prostate cancer cells. Dual-luciferase assay and RNA binding protein immunoprecipitation assay were performed to explore the interplay of miR-187-3p and VPS9D1-AS1 or FGFRL1. The results showed that VPS9D1-AS1 could sponge miR-187-3p, and FGFRL1 could serve as a direct target of miR-187-3p. Moreover, combined with the results of the rescue experiment, VPS9D1-AS1 was found to upregulate FGFRL1 by competitively sponging miR-187-3p to accelerate the malignant behaviors of prostate cancer cells. In conclusion, VPS9D1-AS1 could promote the phenotype progression of prostate cancer cells through targeting the miR-187-3p/FGFRL1 axis, and it has the potential to be a target for prostate cancer patients.


Assuntos
MicroRNAs , Neoplasias da Próstata , RNA Longo não Codificante , Masculino , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Proliferação de Células , Linhagem Celular Tumoral , Movimento Celular/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Próstata/genética , Regulação Neoplásica da Expressão Gênica
5.
J Immunother Cancer ; 11(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37890888

RESUMO

A novel crosstalk between immunogenic and oncometabolic pathways triggered by T cell-released interferon-gamma (IFN-É£) has been recently identified. This IFN-É£-pyruvate kinase M2-ß-catenin axis relies on fibroblast growth factor 2 (FGF2) signaling in tumor cells and leads to hyperprogressive disease on immune checkpoint blockade (ICB) in preclinical models. This result underlines how IFN-É£ signaling may have distinct effects on tumor cells depending on their oncogenic and metabolic features. On the basis of these data, this study aims to explore the relationship between genomic tumor FGF2 or FGF/FGF receptor (FGFR) amplification and immunotherapy response in patients with metastatic solid cancers. We used a large genomic data set of 545 ICB-treated patients and compared outcomes between those with and without FGF2 genomic amplification. Patients with no FGF2 genomic amplification had significantly longer progression-free survival (PFS) (HR=0.55 (95% CI 0.4, 0.8); p value=0.005) and overall survival (OS) (HR=0.56 (0.3, 0.9); p value=0.02) than patients harboring an FGF2 amplification. We next questioned whether such an observation may extend to genomic amplification of the FGF/FGFR pathway. Similarly, patients with no FGF/FGFR genomic amplification had longer PFS (HR=0.71 (0.8, 0.9), p value=0.004) and OS (HR=0.77 (0.6, 1); p value=0.06). RNA sequencing analysis of tumors between the amplified and non-amplified populations showed distinct expression profiles concerning oncogenic pathways. Importantly, using a cohort of patients untreated with ICB from the The Cancer Genome Atlas, we show that FGF2 and FGF/FGFR genomic amplification were not associated with prognosis, thus demonstrating that we identified a predictive biomarker of immunotherapy resistance.


Assuntos
Neoplasias , Receptores de Fatores de Crescimento de Fibroblastos , Humanos , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/uso terapêutico , Inibidores de Checkpoint Imunológico/uso terapêutico , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Genômica
6.
PLoS One ; 18(10): e0286040, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37856433

RESUMO

Activation of Map kinase/Erk signalling downstream of fibroblast growth factor (Fgf) tyrosine kinase receptors regulates gene expression required for mesoderm induction and patterning of the anteroposterior axis during Xenopus development. We have proposed that a subset of Fgf target genes are activated in the embyo in response to inhibition of a transcriptional repressor. Here we investigate the hypothesis that Cic (Capicua), which was originally identified as a transcriptional repressor negatively regulated by receptor tyrosine kinase/Erk signalling in Drosophila, is involved in regulating Fgf target gene expression in Xenopus. We characterise Xenopus Cic and show that it is widely expressed in the embryo. Fgf overexpression or ectodermal wounding, both of which potently activate Erk, reduce Cic protein levels in embryonic cells. In keeping with our hypothesis, we show that Cic knockdown and Fgf overexpression have overlapping effects on embryo development and gene expression. Transcriptomic analysis identifies a cohort of genes that are up-regulated by Fgf overexpression and Cic knockdown. We investigate two of these genes as putative targets of the proposed Fgf/Erk/Cic axis: fos and rasl11b, which encode a leucine zipper transcription factor and a ras family GTPase, respectively. We identify Cic consensus binding sites in a highly conserved region of intron 1 in the fos gene and Cic sites in the upstream regions of several other Fgf/Cic co-regulated genes, including rasl11b. We show that expression of fos and rasl11b is blocked in the early mesoderm when Fgf and Erk signalling is inhibited. In addition, we show that fos and rasl11b expression is associated with the Fgf independent activation of Erk at the site of ectodermal wounding. Our data support a role for a Fgf/Erk/Cic axis in regulating a subset of Fgf target genes during gastrulation and is suggestive that Erk signalling is involved in regulating Cic target genes at the site of ectodermal wounding.


Assuntos
Sistema de Sinalização das MAP Quinases , Receptores de Fatores de Crescimento de Fibroblastos , Animais , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Sistema de Sinalização das MAP Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Xenopus laevis/metabolismo
7.
Nat Commun ; 14(1): 5874, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735159

RESUMO

Unveiling the molecular mechanisms of receptor activation has led to much understanding of development as well as the identification of important drug targets. We use the Drosophila tracheal system to study the activity of two families of widely used and conserved receptors, the TNFRs and the RTK-FGFRs. Breathless, an FGFR, controls the program of differentiation of the tracheal terminal cells in response to ligand activation. Here we identify a role for Wengen, a TNFR, in repressing the terminal cell program by regulating the MAPK pathway downstream of Breathless. We find that Wengen acts independently of both its canonical ligand and downstream pathway genes. Wengen does not stably localise at the membrane and is instead internalised-a trafficking that seems essential for activity. We show that Breathless and Wengen colocalise in intracellular vesicles and form a complex. Furthermore, Wengen regulates Breathless accumulation, possibly regulating Breathless trafficking and degradation. We propose that, in the tracheal context, Wengen interacts with Breathless to regulate its activity, and suggest that such unconventional mechanism, involving binding by TNFRs to unrelated proteins, may be a general strategy of TNFRs.


Assuntos
Drosophila , Sistemas de Liberação de Medicamentos , Animais , Ligantes , Fosforilação , Diferenciação Celular , Dispneia , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores do Fator de Necrose Tumoral
8.
Dev Dyn ; 252(12): 1428-1448, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37435833

RESUMO

BACKGROUND: Fibroblast growth factor receptor-3 (FGFR3) gain-of-function mutations are linked to achondroplasia. Infigratinib, a FGFR1-3 tyrosine kinase inhibitor, improves skeletal growth in an achondroplasia mouse model. FGFs and their receptors have critical roles in developing teeth, yet effects of infigratinib on tooth development have not been assessed. Dentoalveolar and craniofacial phenotype of Wistar rats dosed with low (0.1 mg/kg) and high (1.0 mg/kg) dose infigratinib were evaluated using micro-computed tomography, histology, and immunohistochemistry. RESULTS: Mandibular third molars were reduced in size and exhibited aberrant crown and root morphology in 100% of female rats and 80% of male rats at high doses. FGFR3 and FGF18 immunolocalization and extracellular matrix protein expression were unaffected, but cathepsin K (CTSK) was altered by infigratinib. Cranial vault bones exhibited alterations in dimension, volume, and density that were more pronounced in females. In both sexes, interfrontal sutures were significantly more patent with high dose vs vehicle. CONCLUSIONS: High dose infigratinib administered to rats during early stages affects dental and craniofacial development. Changes in CTSK from infigratinib in female rats suggest FGFR roles in bone homeostasis. While dental and craniofacial disruptions are not expected at therapeutic doses, our findings confirm the importance of dental monitoring in clinical studies.


Assuntos
Acondroplasia , Camundongos , Masculino , Ratos , Feminino , Animais , Microtomografia por Raio-X , Ratos Wistar , Receptores de Fatores de Crescimento de Fibroblastos/genética
9.
FASEB J ; 37(7): e23043, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37342898

RESUMO

FGF homologous factors (FHFs) are the least described group of fibroblast growth factors (FGFs). The FHF subfamily consists of four proteins: FGF11, FGF12, FGF13, and FGF14. Until recently, FHFs were thought to be intracellular, non-signaling molecules, despite sharing structural and sequence similarities with other members of FGF family that can be secreted and activate cell signaling by interacting with surface receptors. Here, we show that despite lacking a canonical signal peptide for secretion, FHFs are exported to the extracellular space. Furthermore, we propose that their secretion mechanism is similar to the unconventional secretion of FGF2. The secreted FHFs are biologically active and trigger signaling in cells expressing FGF receptors (FGFRs). Using recombinant proteins, we demonstrated their direct binding to FGFR1, resulting in the activation of downstream signaling and the internalization of the FHF-FGFR1 complex. The effect of receptor activation by FHF proteins is an anti-apoptotic response of the cell.


Assuntos
Fatores de Crescimento de Fibroblastos , Receptores de Fatores de Crescimento de Fibroblastos , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/fisiologia , Fosforilação , Processamento de Proteína Pós-Traducional
10.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37108717

RESUMO

Fibroblast growth factors (FGFs) encode a large family of growth factor proteins that activate several intracellular signaling pathways to control diverse physiological functions. The human genome encodes 22 FGFs that share a high sequence and structural homology with those of other vertebrates. FGFs orchestrate diverse biological functions by regulating cellular differentiation, proliferation, and migration. Dysregulated FGF signaling may contribute to several pathological conditions, including cancer. Notably, FGFs exhibit wide functional diversity among different vertebrates spatiotemporally. A comparative study of FGF receptor ligands and their diverse roles in vertebrates ranging from embryonic development to pathological conditions may expand our understanding of FGF. Moreover, targeting diverse FGF signals requires knowledge regarding their structural and functional heterogeneity among vertebrates. This study summarizes the current understanding of human FGF signals and correlates them with those in mouse and Xenopus models, thereby facilitating the identification of therapeutic targets for various human disorders.


Assuntos
Fatores de Crescimento de Fibroblastos , Neoplasias , Humanos , Animais , Camundongos , Xenopus laevis/metabolismo , Ligantes , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Desenvolvimento Embrionário/genética , Neoplasias/genética
11.
J Biomol Struct Dyn ; 41(22): 13509-13533, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36995019

RESUMO

ABSTRACT Fibroblast Growth Factor (FGF) ligands and their receptors are crucial factors driving chemoresistance in several malignancies, challenging the efficacy of currently available anti-cancer drugs. The Fibroblast growth factor/receptor (FGF/FGFR) signalling malfunctions in tumor cells, resulting in a range of molecular pathways that may impact its drug effectiveness. Deregulation of cell signalling is critical since it can enhance tumor growth and metastasis. Overexpression and mutation of FGF/FGFR induce regulatory changes in the signalling pathways. Chromosomal translocation facilitating FGFR fusion production aggravates drug resistance. Apoptosis is inhibited by FGFR-activated signalling pathways, reducing multiple anti-cancer medications' destructive impacts. Angiogenesis and epithelial-mesenchymal transition (EMT) are facilitated by FGFRs-dependent signalling, which correlates with drug resistance and enhances metastasis. Further, lysosome-mediated drug sequestration is another prominent method of resistance. Inhibition of FGF/FGFR by following a plethora of therapeutic approaches such as covalent and multitarget inhibitors, ligand traps, monoclonal antibodies, recombinant FGFs, combination therapy, and targeting lysosomes and micro RNAs would be helpful. As a result, FGF/FGFR suppression treatment options are evolving nowadays. To increase positive impacts, the processes underpinning the FGF/FGFR axis' role in developing drug resistance need to be clarified, emphasizing the need for more studies to develop novel therapeutic options to address this significant problem. Communicated by Ramaswamy H. Sarma.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Resistencia a Medicamentos Antineoplásicos , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
12.
Proc Natl Acad Sci U S A ; 120(8): e2213090120, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36791110

RESUMO

Many types of human cancers are being treated with small molecule ATP-competitive inhibitors targeting the kinase domain of receptor tyrosine kinases. Despite initial successful remission, long-term treatment almost inevitably leads to the emergence of drug resistance mutations at the gatekeeper residue hindering the access of the inhibitor to a hydrophobic pocket at the back of the ATP-binding cleft. In addition to reducing drug efficacy, gatekeeper mutations elevate the intrinsic activity of the tyrosine kinase domain leading to more aggressive types of cancer. However, the mechanism of gain-of-function by gatekeeper mutations is poorly understood. Here, we characterized fibroblast growth factor receptor (FGFR) tyrosine kinases harboring two distinct gatekeeper mutations using kinase activity assays, NMR spectroscopy, bioinformatic analyses, and MD simulations. Our data show that gatekeeper mutations destabilize the autoinhibitory conformation of the DFG motif locally and of the kinase globally, suggesting they impart gain-of-function by facilitating the kinase's ability to populate the active state.


Assuntos
Neoplasias , Receptores Proteína Tirosina Quinases , Humanos , Receptores de Fatores de Crescimento de Fibroblastos/genética , Neoplasias/tratamento farmacológico , Mutação , Trifosfato de Adenosina/uso terapêutico , Tirosina , Inibidores de Proteínas Quinases/química
13.
Mol Biol Rep ; 50(3): 1981-1991, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36536184

RESUMO

BACKGROUND: Fibroblast growth factors (FGFs) are key factors affecting diabetic wound healing. However, the FGF family's expression patterns in skin and wounds influenced by both diabetes and sex are still unknown. METHODS AND RESULTS: In this study, normal and Streptozotocin (STZ)-induced type 1 diabetic C57BL/6J male and female mice were used to study the FGF family's expression in non-wound skin and wounds. We found that the expression patterns of Fgfs were affected by sex in both normal and diabetic animals during wound healing. In normal control mice, sex difference had a limited effect on basal skin Fgf expressions. However, it significantly influenced Fgf expressions in wounds. Type 1 diabetes reduced basal and wound-induced skin Fgf expressions. Female mice had far lower wound-induced skin Fgf expressions in diabetic mice. In addition, sex differently influenced Fibroblast growth factors receptor (Fgfr) expression patterns of non-wound skin and wounds in both normal and diabetic mice. Moreover, female mice had a lower relative level of Fibronectin leucine-rich repeat transmembrane protein 2 (FLRT2) - a FGFR activation marker gene - in wound and blood plasma. Correspondingly, the wound areas of female animals were larger than that of male animals in the early stage of wound healing (less than 3-day injury). CONCLUSION: Our research shows that the FGF family have different expression patterns in normal and diabetic wound healing in mice of different sex. Additionally, we also provide the signatures of individual FGFs in diabetic wound healing, which deserve further investigation.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Camundongos , Feminino , Masculino , Animais , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Estreptozocina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Caracteres Sexuais , Camundongos Endogâmicos C57BL , Pele/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Glicoproteínas de Membrana/metabolismo
14.
J Pathol ; 259(2): 220-232, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36385700

RESUMO

Alterations of fibroblast growth factor receptors (FGFRs) are common in bladder and other cancers and result in disrupted signalling via several pathways. Therapeutics that target FGFRs have now entered the clinic, but, in common with many cancer therapies, resistance develops in most cases. To model this, we derived resistant sublines of two FGFR-driven bladder cancer cell lines by long-term culture with the FGFR inhibitor PD173074 and explored mechanisms using expression profiling and whole-exome sequencing. We identified several resistance-associated molecular profiles. These included HRAS mutation in one case and reversible mechanisms resembling a drug-tolerant persister phenotype in others. Upregulated IGF1R expression in one resistant derivative was associated with sensitivity to linsitinib and a profile with upregulation of a YAP/TAZ signature to sensitivity to the YAP inhibitor CA3 in another. However, upregulation of other potential therapeutic targets was not indicative of sensitivity. Overall, the heterogeneity in resistance mechanisms and commonality of the persister state present a considerable challenge for personalised therapy. Nevertheless, the reversibility of resistance may indicate a benefit from treatment interruptions or retreatment following disease relapse in some patients. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Carcinoma de Células de Transição/tratamento farmacológico , Carcinoma de Células de Transição/genética , Carcinoma de Células de Transição/patologia , Recidiva Local de Neoplasia , Receptores de Fatores de Crescimento de Fibroblastos/genética , Transdução de Sinais , Linhagem Celular Tumoral
15.
ESMO Open ; 7(6): 100647, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36455506

RESUMO

BACKGROUND: We analyzed the FGF/FGFR and co-alteration cancer landscape, hypothesizing that combination therapy might be useful in the presence of co-drivers. MATERIALS AND METHODS: We describe FGF/FGFR-altered pathways, prognosis, and co-alterations [cBioPortal (N = 7574)] and therapeutic outcomes [University of California San Diego Molecular Tumor Board (MTB) (N = 16)]. RESULTS: Patients whose cancers harbored FGF/FGFR alterations (N = 1074) versus those without them (N = 6500) had shorter overall survival (OS) (median: 23.1 versus 26.4 months, P = 0.038) (cBioPortal). Only 6.1% (65/1074 patients) had no pathogenic co-alterations accompanying FGF/FGFR axis abnormalities. The most frequently co-altered pathways/genes involved: TP53 (70%); cell cycle (58%); PI3K (55%); and receptor tyrosine kinases and mitogen-activated protein kinase (MAPK) (65%). Harboring alterations in both FGF/FGFR and in the TP53 pathway or in the cell cycle pathway correlated with shorter OS (versus FGF/FGFR-altered without those co-altered signals) (P = 0.0001 and 0.0065). Four of 16 fibroblast growth factor receptor (FGFR) inhibitor-treated patients presented at MTB attained durable partial responses (PRs) (9, 12, 22+, and 52+ months); an additional two, stable disease (SD) of ≥6 months (13+ and 15 months) [clinical benefit rate (SD ≥ 6 months/PR) = 38%]. Importantly, six patients with cyclin pathway co-alterations received the CDK4/6 inhibitor palbociclib (75 mg p.o. 3 weeks on, 1 week off) and the multikinase FGFR inhibitor lenvatinib (10 mg p.o. daily); three (50%) achieved a PR [9 (ovarian), 12 (biliary), and 52+ months (osteosarcoma)]. Palbociclib and lenvatinib were tolerated well. CONCLUSIONS: FGF/FGFR alterations portend a poor prognosis and are frequently accompanied by pathogenic co-aberrations. Malignancies harboring co-alterations that activate both cyclin and FGFR pathways can be co-targeted by CDK4/6 and FGFR inhibitors.


Assuntos
Neoplasias , Quinolinas , Humanos , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/genética , Compostos de Fenilureia , Neoplasias/tratamento farmacológico , Neoplasias/genética
16.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36499450

RESUMO

Cholangiocarcinoma (CCA) is a malignant neoplasm arising in the epithelium of the biliary tract. It represents the second most common primary liver cancer in the world, after hepatocellular carcinoma, and it constitutes 10-15% of hepatobiliary neoplasms and 3% of all gastrointestinal tumors. As in other types of cancers, recent studies have revealed genetic alterations underlying the establishment and progression of CCA. The most frequently involved genes are APC, ARID1A, AXIN1, BAP1, EGFR, FGFRs, IDH1/2, RAS, SMAD4, and TP53. Actionable targets include alterations of FGFRs, IDH1/2, BRAF, NTRK, and HER2. "Precision oncology" is emerging as a promising approach for CCA, and it is possible to inhibit the altered function of these genes with molecularly oriented drugs (pemigatinib, ivosidenib, vemurafenib, larotrectinib, and trastuzumab). In this review, we provide an overview of new biologic drugs (their structures, mechanisms of action, and toxicities) to treat metastatic CCA, providing readers with panoramic information on the trajectory from "old" chemotherapies to "new" target-oriented drugs.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Neoplasias Hepáticas , Humanos , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Mutação , Receptores de Fatores de Crescimento de Fibroblastos/genética , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias Hepáticas/patologia
17.
Front Immunol ; 13: 1030969, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36426352

RESUMO

Background: The emergence of immune checkpoint inhibitors (ICIs) has significantly improved the clinical outcomes of patients with metastatic melanoma. However, survival benefits are only observed in a subset of patients. The fibroblast growth factor receptor (FGFR) family genes are frequently mutated in melanoma, yet their impacts on the efficacy of ICIs remain unclear. Our study aimed to explore the association of FGFR mutations with ICIs efficacy in metastatic melanoma. Methods: The Cancer Genome Atlas (TCGA) data (PanCancer Atlas, skin cutaneous melanoma (SKCM), n = 448) in cBioPortal were collected as a TCGA cohort to investigate the association between FGFR mutations and prognosis of melanoma patients. To explore the impact of FGFR mutations on the efficacy of ICIs in melanoma, clinical and tumor whole-exome sequencing (WES) data of four ICI-treated studies from cBioPortal were consolidated as an ICIs-treated cohort. Moreover, the relationship between FGFR mutations and immunogenicity (tumor mutation burden (TMB), neo-antigen load (NAL), mismatch repair (MMR)-related genes and DNA damage repair (DDR)-related genes) of melanoma was evaluated utilizing data from the ICIs-treated cohort. The influence of FGFR mutations on the tumor immune microenvironment (TIME) of melanoma was also analyzed using the TCGA cohort. Results: In the TCGA cohort, survival in melanoma patients with or without FGFR mutations was nearly equivalent. In the ICIs-treated cohort, patients with FGFR mutations had better survival than those without (median overall survival: 60.00 vs. 31.00 months; hazard ratio: 0.58, 95% CI: 0.42-0.80; P = 0.0051). Besides, the objective response rate was higher for patients harboring FGFR mutations (55.56%) compared to wild-type patients (22.40%) (P = 0.0076). Mechanistically, it was revealed that FGFR mutations correlated with increased immunogenicity (e.g., TMB, NAL, MMR-related gene mutations and DDR-related gene mutations). Meanwhile, FGFR mutant melanoma tended to exhibit an enhanced antitumor TIME compared with its wild-type counterparts. Conclusions: Our study demonstrated that FGFR mutations is a promising biomarker in stratifying patients with advanced melanoma who might benefit from ICIs therapy.


Assuntos
Antineoplásicos Imunológicos , Melanoma , Neoplasias Cutâneas , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/genética , Antineoplásicos Imunológicos/uso terapêutico , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Mutação , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/genética , Microambiente Tumoral/genética
18.
Fish Shellfish Immunol ; 131: 602-611, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36064005

RESUMO

The fibroblast growth factor receptor (FGFR) belongs to the tyrosine kinase family consisting of four members (FGFR1-4). This study involved identification and characterization of FGFR1 and FGFR3 from mud crab Scylla paramamosain for the first time. The obtained cDNAs of SpFGFR1 and SpFGFR3 were 2,380 bp and 2,982 bp in length with a 1,503 bp and 2,310 bp open reading frame, respectively. The predicted SpFGFR1 protein included three immunoglobulin domains and a transmembrane region, while SpFGFR3 protein possessed a typical TyrKc (Tyrosine kinase, catalytic) domain. Real-time PCR analysis showed that SpFGFR1 and SpFGFR3 were highly expressed in the hepatopancreas. Furthermore, the expression levels of SpFGFR1 and SpFGFR3 in the hepatopancreas were enhanced following challenges with Vibro alginolyticus, Staphylococcus aureus, Poly (I:C) and White spot syndrome virus, which shows the involvement of SpFGFR1 and SpFGFR3 in innate immune response to infections from bacteria and virus. There was significant suppression of six antimicrobial peptide genes (SpALF1-5 and SpCrustin) and three NF-κB members (SpDorsal, SpIKK and SpRelish) when SpFGFR1 and SpFGFR3 was interfered in vivo. Also, treatment of the hemocytes with specific inhibitor of SpFGFR for 24 h consistently down-regulated SpDorsal, SpRelish and AMPs. These results suggested that SpFGFR1 and SpFGFR3 played important roles in regulating the Toll signaling pathway and immune deficiency (IMD) pathway through NF-κB signaling pathway. These findings may provide new insights into the role of FGFRs in the innate immune function of crustaceans.


Assuntos
Braquiúros , Animais , NF-kappa B/metabolismo , Proteínas de Artrópodes , Receptores de Fatores de Crescimento de Fibroblastos/genética , Filogenia , Imunidade Inata/genética , Transdução de Sinais , Poli I-C/farmacologia , Proteínas Tirosina Quinases/genética
19.
Cancer Sci ; 113(11): 4005-4010, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35950366

RESUMO

Fibroblast growth factor receptor inhibitors (FGFRi) were introduced into clinical trials on several cancer types and found to be particularly efficacious on urothelial cancer and cholangiocarcinoma. Although many enrolled patients responded well in clinical trials, there were some patients who did not respond to FGFRi even though their tumors carried the genomic changes that met the enrollment criteria. As already established, fibroblast growth factor receptor (FGFR) and epidermal growth factor receptor (EGFR) share the downstream signaling pathway of MAPK activation. Accordingly, it is conceivable that targeted inhibition of FGFR alone could leave the MAPK signaling unaffected when the signaling through EGFR is relatively strong. To test this hypothesis, we calculated here the FGFR to EGFR mRNA ratio (F/E for short) of biliary tract and urothelial cancer cell lines utilized in preclinical studies. In six biliary tract cancer cell lines, two responsive lines had an F/E of 9.5 and 9.0, whereas the F/E of four nonresponsive lines was 0.1-1.8. In 22 urothelial cancer cell lines, four of the five responsive lines showed an F/E of 2.8-4.9 (median, 3.6), whereas the F/E range of 17 nonresponsive lines was 0.01-2.7 (median, 0.6) (p = 0.004). We further investigated our 47 patient-derived colorectal cancer-stem cell spheroid lines. The 18 responsive lines showed relatively high F/E (median, 16.4), whereas 29 nonresponsive lines had low F/E (median, 9.2) (p = 0.0006). These results suggest that F/E is another strong predictor of responses to FGFRi that is as useful as the current genomic criteria based solely on the FGFR genomic changes.


Assuntos
Neoplasias , Inibidores de Proteínas Quinases , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/genética , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Transdução de Sinais , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética
20.
J Steroid Biochem Mol Biol ; 224: 106173, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36031072

RESUMO

Many malignancies are driven by mutations within the gene for fibroblast growth factor receptor 1 (FGFR1). Previously, we have shown that signal transduction from the FOP2-FGFR1 fusion protein in acute myeloid leukemia KG1 cells is responsible for a low level of expression of the vitamin D receptor gene. In this paper, we address whether other fibroblast growth factor receptors regulate the vitamin D receptor (VDR) gene. We used the human myeloid leukemia U937 and HL60 cells, the bone cancer cell line U2OS, and cell transfection methods to answer the question. For myeloid leukemia cells, overexpression of FGFRs 1-3 genes caused a shift towards monocytic differentiation; this was extracellular regulated kinase (Erk) 1,2-dependent. Overexpression of FGFRs 1-3 genes also upregulated expression of the VDR gene, further sensitizing these cells to 1,25-dihydroxyvitamin D-induced monocyte differentiation. When we increased expression in bone cells, fibroblast growth factor receptors did not upregulate VDR gene expression, nor influence the activity of VDR. Fibroblast growth factor receptors are overexpressed in many neoplasms. Therefore, it may be reasonable to use vitamin D analogs to treat these cancers, to activate VDR and drive cell differentiation.


Assuntos
Leucemia Mieloide Aguda , Receptores de Calcitriol , Humanos , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/genética , Leucemia Mieloide Aguda/metabolismo , Diferenciação Celular , Células HL-60 , Di-Hidroxicolecalciferóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...